qps_pips(H,
c,
A,
l,
u,
xmin=None,
xmax=None,
x0=None,
opt=None)
| source code
|
Uses the Python Interior Point Solver (PIPS) to solve the following QP
(quadratic programming) problem:
min 1/2 x'*H*x + C'*x
x
subject to:
l <= A*x <= u (linear constraints)
xmin <= x <= xmax (variable bounds)
Note the calling syntax is almost identical to that of QUADPROG from
MathWorks' Optimization Toolbox. The main difference is that the linear
constraints are specified with A, L,
U instead of A, B,
Aeq, Beq.
Example from http://www.uc.edu/sashtml/iml/chap8/sect12.htm:
>>> from numpy import array, zeros, Inf
>>> from scipy.sparse import csr_matrix
>>> H = csr_matrix(array([[1003.1, 4.3, 6.3, 5.9],
... [4.3, 2.2, 2.1, 3.9],
... [6.3, 2.1, 3.5, 4.8],
... [5.9, 3.9, 4.8, 10 ]]))
>>> c = zeros(4)
>>> A = csr_matrix(array([[1, 1, 1, 1 ],
... [0.17, 0.11, 0.10, 0.18]]))
>>> l = array([1, 0.10])
>>> u = array([1, Inf])
>>> xmin = zeros(4)
>>> xmax = None
>>> x0 = array([1, 0, 0, 1])
>>> solution = qps_pips(H, c, A, l, u, xmin, xmax, x0)
>>> round(solution["f"], 11) == 1.09666678128
True
>>> solution["converged"]
True
>>> solution["output"]["iterations"]
10
All parameters are optional except H, c,
A and l or u.
- Parameters:
H (csr_matrix) - Quadratic cost coefficients.
c (array) - vector of linear cost coefficients
A (csr_matrix) - Optional linear constraints.
l (array) - Optional linear constraints. Default values are -Inf.
u (array) - Optional linear constraints. Default values are Inf.
xmin (array) - Optional lower bounds on the x variables,
defaults are -Inf.
xmax (array) - Optional upper bounds on the x variables,
defaults are Inf.
x0 (array) - Starting value of optimization vector x.
opt (dict) - optional options dictionary with the following keys, all of which
are also optional (default values shown in parentheses)
-
verbose (False) - Controls level of progress
output displayed
-
feastol (1e-6) - termination tolerance for
feasibility condition
-
gradtol (1e-6) - termination tolerance for
gradient condition
-
comptol (1e-6) - termination tolerance for
complementarity condition
-
costtol (1e-6) - termination tolerance for cost
condition
-
max_it (150) - maximum number of iterations
-
step_control (False) - set to True to enable
step-size control
-
max_red (20) - maximum number of step-size
reductions if step-control is on
-
cost_mult (1.0) - cost multiplier used to scale
the objective function for improved conditioning. Note: The
same value must also be passed to the Hessian evaluation
function so that it can appropriately scale the objective
function term in the Hessian of the Lagrangian.
- Returns: dict
- The solution dictionary has the following keys:
-
x - solution vector
-
f - final objective function value
-
converged - exit status
-
True = first order optimality conditions satisfied
-
False = maximum number of iterations reached
-
None = numerically failed
-
output - output dictionary with keys:
-
iterations - number of iterations performed
-
hist - dictionary of arrays with
trajectories of the following: feascond, gradcond,
coppcond, costcond, gamma, stepsize, obj, alphap, alphad
-
message - exit message
-
lmbda - dictionary containing the Langrange and
Kuhn-Tucker multipliers on the constraints, with keys:
-
eqnonlin - nonlinear equality constraints
-
ineqnonlin - nonlinear inequality
constraints
-
mu_l - lower (left-hand) limit on linear
constraints
-
mu_u - upper (right-hand) limit on linear
constraints
-
lower - lower bound on optimization
variables
-
upper - upper bound on optimization
variables
See Also:
pips
- Authors:
-
Ray Zimmerman (PSERC Cornell),
Richard Lincoln
|