Package pypower :: Module qps_mosek
[hide private]
[frames] | no frames]

Module qps_mosek

source code

Quadratic Program Solver based on MOSEK.

Functions [hide private]
 
qps_mosek(H, c=None, A=None, l=None, u=None, xmin=None, xmax=None, x0=None, opt=None)
Quadratic Program Solver based on MOSEK.
source code
Variables [hide private]
  __package__ = 'pypower'
Function Details [hide private]

qps_mosek(H, c=None, A=None, l=None, u=None, xmin=None, xmax=None, x0=None, opt=None)

source code 

Quadratic Program Solver based on MOSEK.

A wrapper function providing a PYPOWER standardized interface for using MOSEKOPT to solve the following QP (quadratic programming) problem:

   min 1/2 x'*H*x + c'*x
    x

subject to:

   l <= A*x <= u       (linear constraints)
   xmin <= x <= xmax   (variable bounds)

Inputs (all optional except H, C, A and L):

  • H : matrix (possibly sparse) of quadratic cost coefficients
  • C : vector of linear cost coefficients
  • A, l, u : define the optional linear constraints. Default values for the elements of L and U are -Inf and Inf, respectively.
  • xmin, xmax : optional lower and upper bounds on the x variables, defaults are -Inf and Inf, respectively.
  • x0 : optional starting value of optimization vector x
  • opt : optional options structure with the following fields, all of which are also optional (default values shown in parentheses)
    • verbose (0) - controls level of progress output displayed
      • 0 = no progress output
      • 1 = some progress output
      • 2 = verbose progress output
    • max_it (0) - maximum number of iterations allowed
      • 0 = use algorithm default
    • mosek_opt - options struct for MOSEK, values in verbose and max_it override these options
  • problem : The inputs can alternatively be supplied in a single problem struct with fields corresponding to the input arguments described above: H, c, A, l, u, xmin, xmax, x0, opt

Outputs:

  • x : solution vector
  • f : final objective function value
  • exitflag : exit flag
    • 1 = success
    • 0 = terminated at maximum number of iterations
    • -1 = primal or dual infeasible < 0 = the negative of the MOSEK return code
  • output : output dict with the following fields:
    • r - MOSEK return code
    • res - MOSEK result dict
  • lmbda : dict containing the Langrange and Kuhn-Tucker multipliers on the constraints, with fields:
    • mu_l - lower (left-hand) limit on linear constraints
    • mu_u - upper (right-hand) limit on linear constraints
    • lower - lower bound on optimization variables
    • upper - upper bound on optimization variables
Authors:
Ray Zimmerman (PSERC Cornell), Richard Lincoln