Parses and initializes OPF input arguments.
Returns the full set of initialized OPF input arguments, filling in
default values for missing arguments. See Examples below for the possible
calling syntax options.
Input arguments options:
opf_args(ppc)
opf_args(ppc, ppopt)
opf_args(ppc, userfcn, ppopt)
opf_args(ppc, A, l, u)
opf_args(ppc, A, l, u, ppopt)
opf_args(ppc, A, l, u, ppopt, N, fparm, H, Cw)
opf_args(ppc, A, l, u, ppopt, N, fparm, H, Cw, z0, zl, zu)
opf_args(baseMVA, bus, gen, branch, areas, gencost)
opf_args(baseMVA, bus, gen, branch, areas, gencost, ppopt)
opf_args(baseMVA, bus, gen, branch, areas, gencost, userfcn, ppopt)
opf_args(baseMVA, bus, gen, branch, areas, gencost, A, l, u)
opf_args(baseMVA, bus, gen, branch, areas, gencost, A, l, u, ppopt)
opf_args(baseMVA, bus, gen, branch, areas, gencost, A, l, u, ...
ppopt, N, fparm, H, Cw)
opf_args(baseMVA, bus, gen, branch, areas, gencost, A, l, u, ...
ppopt, N, fparm, H, Cw, z0, zl, zu)
The data for the problem can be specified in one of three ways:
-
a string (ppc) containing the file name of a PYPOWER case which
defines the data matrices baseMVA, bus, gen, branch, and gencost
(areas is not used at all, it is only included for backward
compatibility of the API).
-
a dict (ppc) containing the data matrices as fields.
-
the individual data matrices themselves.
The optional user parameters for user constraints (A, l,
u ), user costs (N, fparm, H, Cw ), user variable
initializer (z0), and user variable limits (zl, zu ) can also
be specified as fields in a case dict, either passed in directly or
defined in a case file referenced by name.
When specified, A, l, u represent additional linear
constraints on the optimization variables, l <= A*[x z] <=
u . If the user specifies an A matrix that has more
columns than the number of "x " (OPF) variables,
then there are extra linearly constrained "z "
variables. For an explanation of the formulation used and instructions
for forming the A matrix, see the MATPOWER manual.
A generalized cost on all variables can be applied if input arguments
N , fparm , H and Cw
are specified. First, a linear transformation of the optimization
variables is defined by means of r = N * [x z] . Then, to
each element of r a function is applied as encoded in the
fparm matrix (see Matpower manual). If the resulting vector
is named w , then H and Cw define a
quadratic cost on w : (1/2)*w'*H*w + Cw * w .
H and N should be sparse matrices and
H should also be symmetric.
The optional ppopt vector specifies PYPOWER options. See
ppoption
for details and default values.
- Authors:
-
Ray Zimmerman (PSERC Cornell),
Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
Autonoma de Manizales),
Richard Lincoln
|