Package pypower :: Module dcopf_solver
[hide private]
[frames] | no frames]

Module dcopf_solver

source code

Solves a DC optimal power flow.

Functions [hide private]
 
dcopf_solver(om, ppopt, out_opt=None)
Solves a DC optimal power flow.
source code
Variables [hide private]
  __package__ = 'pypower'
Function Details [hide private]

dcopf_solver(om, ppopt, out_opt=None)

source code 

Solves a DC optimal power flow.

Inputs are an OPF model object, a PYPOWER options dict and a dict containing fields (can be empty) for each of the desired optional output fields.

Outputs are a results dict, success flag and raw output dict.

results is a PYPOWER case dict (ppc) with the usual baseMVA, bus branch, gen, gencost fields, along with the following additional fields:

  • order see 'help ext2int' for details of this field
  • x final value of optimization variables (internal order)
  • f final objective function value
  • mu shadow prices on ...
    • var
      • l lower bounds on variables
      • u upper bounds on variables
    • lin
      • l lower bounds on linear constraints
      • u upper bounds on linear constraints
  • g (optional) constraint values
  • dg (optional) constraint 1st derivatives
  • df (optional) obj fun 1st derivatives (not yet implemented)
  • d2f (optional) obj fun 2nd derivatives (not yet implemented)

success is True if solver converged successfully, False otherwise.

raw is a raw output dict in form returned by MINOS

  • xr final value of optimization variables
  • pimul constraint multipliers
  • info solver specific termination code
  • output solver specific output information

See Also: opf, qps_pypower

Authors:
Ray Zimmerman (PSERC Cornell), Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales), Richard Lincoln